
ABSTRACT: Model updating methods are often used in vibration-based structural health monitoring 
(SHM) when a FE model is available. The approach presented here is based on  the Virtual Distortion 
Method (VDM). The VDM was originally a method of fast reanalysis used for optimal prestress and 
redesign of skeletal structures in statics. With an extension to dynamics, it turned out to be a useful tool 

for structural parameter identification and SHM. Stiffness, mass and damping modifications are 
considered in this paper. Fundamental steps of  the identification procedures are outlined. Good results 
of numerical simulations are subsequently confronted with an on-going experiment. Problems to be 
faced and directions of future research are mentioned. 

1. INTRODUCTION 

Modification of structural parameters may be interpreted as a direct change introduced to the 
structure but also as a change of state that the structure experiences during its lifetime. In particular such 
modifications may reflect structural damage. To this end, a model of the analysed structure is necessary. 
This model should be well calibrated i.e. its responses should be as similar to measured responses of the 
reference structure as possible. Then if a new set of measurements corresponding to the actual structure 
is available, a procedure of model updating can be started. The aim of the procedure is to determine 
proper modifications that need to be introduced to the model in order to match its response to current 
measurements. This model matching can be obtained via optimization as a sensitivity-based solution of 
the inverse problem e.g. as proposed by Teughels, De Roeck (2004). The model updating approaches 
are often used for identifying structural damage in vibration-based Structural Health Monitoring (SHM) 
as reported in Uhl et al. (2008). 

The method of model updating proposed in this paper is called the Virtual Distortion Method 
(VDM). It can be classified as a method of fast reanalysis. It uses the virtual distortions as design 
variables in the procedure of solution of the inverse problem. These virtual distortions are pseudo 
quantities e.g. pseudo-strains, whose role is to modify structural response instead of introducing 
corrections of stiffness and mass directly as commonly performed. In order to achieve this, some pre-
calculated responses of the structure, characterizing its internal relations must be known. The full set of 
these pre-calculated responses is called the influence matrix within the framework of VDM. 

This paper describes the use of the VDM concept of model updating for identifying modifications of 
stiffness, mass and damping in truss structures. Considering the initial idea of virtual distortion 
understood as a pseudo-strain, the measured quantities in our experiments are strains, collected by 
piezoelectric sensors. This is quite different from the majority of approaches, which use acceleration 
measurements in vibration-based SHM. For the sake of speed of numerical calculations, the steady-state 
version of the VDM-based identification approach with harmonic excitation is presented. The numerical 
calculations are confronted with an experiment. 
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2. MODEL UPDATING BY THE VIRTUAL DISTORTION METHOD 

2.1. Brief characteristic of VDM 

The Virtual Distortion Method belongs to fast reanalysis methods as described by Akgun et al. 
(2001). This means that it needs a baseline response obtained due to an initial analysis. Subsequently 
this baseline response can be efficiently modified in a VDM-based reanalysis. To this end, the so-called 
influence matrices are needed. These matrices are sets of structural responses due to local perturbations 
applied either to elements or to nodes (degrees of freedom) of a structure. The local perturbations are 
called virtual distortions. Their application in numerical modelling is equivalent to the introduction of 
real modification in the structure. The number of virtual distortions which have to be considered when 
building the influence matrices depends upon the type of the analysed structure. The simplest case is a 
truss structure in which the application of one virtual distortion corresponding to the axial strain in an 
element is enough to describe inter-relations in structural system. For frames, bending distortion and 
bending plus shear distortion must be applied apart from the axial strain. For plates, the number of 
distortions grow and the size of influence matrices seem to limit the use of VDM. Therefore the VDM, 
presented in Holnicki-Szulc (2008), found its applications mostly to skeletal structures in mechanics, 
but also to non-structural engineering systems, which can be represented as graphs. 

2.2. Identification of stiffness and mass 

Modifications of stiffness can be performed both for static and dynamic analyses. The simplest way 
to introduce such a modification to the structure is to change Young’s modulus in a truss element. This 
is purely a modification of material properties and therefore has a static character. The coefficient of 
stiffness change µ can be expressed as a ratio of the modified E’ to initial E Young’s modulus. This 
change can be modelled within the framework of the VDM by local introduction of a virtual distortion 
ε0

 (pseudo-strain) to the structural element which is to be modified. Thus the coefficient of stiffness 
change µ is expressed as: 
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Modifications of mass are inherently related to structural dynamics. In this paper, the steady state 
dynamics due to harmonic load is assumed, similarly to the approach described in Swiercz et al. (2008). 
Modifications of inertia can be numerically realized by the change of material density. A more practical 
approach is to change the cross-sectional area of an element, which involves both the stiffness and mass 
change. In order to account for the inertia modification within the framework of the VDM, another kind 
of virtual distortion f

0
 (external pseudo-force) is needed. This pseudo-force is externally applied to 

nodes of a truss structure. If stiffness and mass changes are considered simultaneously and system 
linearity is assumed, the structural response (in terms of strains and displacements) can be expressed 
within the VDM as a superposition of the baseline response 

L
 and two residual responses 

R
 due to virtual 

distortions ε0
 and f

0
 respectively: 
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where: ε – the total strain, ε0
 – the virtual distortion modelling stiffness modifications, f

0
 – the virtual distortion 

modelling mass modifications, D
ε
, D

f
, B

ε
, B

f
 – the respective influence matrices e.g. D

ε
 stores strain responses due 

to unit strain distortions. 

The equation responsible for mass change modelling can be obtained by comparing two equations 
of motion for the structures with actual and virtual (by f

0
) modifications. After rearrangements the 

relation for harmonic motion at frequency ω (with quasi-static amplitudes of f
0
 only) yields: 

 0fMu
02 =+∆ω−  (3) 

where: ∆M – the global matrix of mass modifications. 



If both damage degradation and mass loss are considered, eq. (1) and (3) constitute a set of 
equations which should be solved for the stiffness-modelling distortions ε0

 and mass-modelling 
distortions f

0
. 

In the identification process, a minimum of the following objective function is sought: 
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where: εM
 – the measured strain. 

The modification coefficient has to be bounded in the range <0,1> in order to consider structural 
damage. Gradient of the function (4) with respect to the design variable µ is calculated using the chain 
rule of differentiation. Partial derivatives of ε0

 and f
0
 with respect to µ are computed by both side 

differentiation of the set of equations (1) and (3), which produces the same left-hand side matrix as in 
the primary set (1) and (3). The design variable µ is updated in iterations by an optimization routine e.g. 
simple steepest descent as in Kolakowski et al. (2004) or advanced Levenberg-Marquardt as in 
Kolakowski et al. (2008). 

The described model updating process effectively solves an inverse problem of parameter 
identification relying on strain measurements and gradient-based optimization methods. It is important 
to notice that the same optimization procedure can be used to calibrate the numerical model to 
experiment, which is a sine qua non condition for subsequent successful identification of stiffness and 
mass modifications. 

2.3. Identification of damping 

Damping is another parameter that can be identified by the VDM. The proposed approach is used to 
solve the inverse problem of identification of material damping by decomposing it into two linear 
subproblems. Confining the considerations to material damping only, it is assumed that the damping 
parameters can be identified for each member of a truss structure independently. Thus the damping 
matrix C can be expressed as: 

 GLSCGC
T β=  (5) 

where: C
β
=diag{β1, ... , βN_el}, K = G

T
LSG is the stiffness matrix, L is the diagonal matrix of element lengths, G is 

the displacement-strain matrix, which relates the global displacements u to local element strains ε, S is the diagonal 

matrix of element stiffnesses EiAi. 

The steady state response of the structure under harmonic excitation is considered, therefore the 
exciting force of the complex exponential form is applied to the model. The motion of the structure with 
only material damping modelled by virtual distortions φ0

 is described by the equation expressing 
respective amplitudes: 

 ( ) fLSGCiLSGMu T0T2 =ε+φ−εω+ω− β  (6) 

Assuming that the member forces in the modified and modelled (by φ0
) structures are equal, the 

relation between the distortion and the equivalent modification of material damping can be found as: 

 0i φ=ωηε−  (7) 

where η is defined as η= ŜĈβ−SC
β
=(µ−1)SC

β
 and symbols with ^ refer to modified structural parameters. 

The identification procedure consists of two steps. The first one is to find the virtual distortions that 
correspond to the measured strain response ε: 

 L0D ε−ε=φε  (8) 

Since in statically indeterminate structures the influence matrix D
ε
 is singular, there is an infinite 

number of distortions φ0
 that solve equation (8) in the least-squares sense. These distortions form a 

linear subspace that can be computed using the Singular Value Decomposition (SVD) of the influence 
matrix. The equivalent virtual distortions can be represented in the following form: 



 WxSVD0 +φ=φ  (9) 

where the columns of the matrix W generate the null space of D
ε
 , the vector x contains arbitrary complex numbers 

and φSVD  is the least-squares solution of equation (8). 

The second step is to compute the material damping coefficients using eq. (7). Since the strain 
response ε of the truss structure is measured in each element, the eq. (7) become decoupled and form a 
set of linear equations, with one unknown per equation. Additional assumption is that η must be real 
numbers. By dividing complex quantities into real and imaginary parts, a set of real equations can be 
obtained from which the coefficients η may be calculated: 
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3. NUMERICAL SIMULATIONS VS. EXPERIMENT 

3.1. Considered structure 

The VDM-based parameter identification procedure is demonstrated for a 2D fifteen-element truss 
structure, depicted in Fig. 1a, made of steel (E = 204 GPa). A view of the corresponding numerical 
model with element numbers is shown in Fig. 1b. Two top nodes of the truss are fully suppressed. The 
structure consists of three sections 0.75 m x 0.4 m each. The total length of the structure is 2.25 m. 
Twelve elements have uniform cross-sectional areas A = 0.56 cm

2
. Three diagonals (no. 4, 10, 14) are 

double elements of cross-sectional areas 2A = 1.12 cm
2
 with a gap between them to let the cross-

diagonals in. Concentrated masses of 0.592 kg and 0.639 kg were added in the model in bottom and 
middle nodes respectively in order to account for the additional mass of joints in the real structure. 

a)   b)   c)  

Fig. 1 Analyzed structure – a) the reference truss, b) its numerical model, c) the truss with construction foam 



3.2. Numerical simulations of stiffness/mass modifications 

A scenario of stiffness/mass modifications was assumed with the following coefficients of cross-
sectional modifications: µ3=0.7, µ7=0.5, µ14=0.8 in elements no. 3, 7 and 14 respectively. The result of 
parameter identification for pure data can be seen in Fig. 2. The influence of 5% noise can be analyzed 
in Fig. 3. In general, good quality of identification is observed. 

 
Fig. 2 Numerical identification of stiffness/mass parameter for assumed scenario. 

 
Fig. 3 Numerical identification of stiffness/mass parameter for assumed scenario (with 5% noise). 

3.3. Numerical simulations of damping modifications 

The damping matrix was initially assumed using the classical Rayleigh model with coefficients 
which correspond to 1% critical damping. Based on the proposed model of the material damping, the 
actual damping (introduced modifications) is assumed to increase three µ5=3, five µ8=5 and two times 
µ9=2 in elements no. 5, 8 and 9 respectively. Figure 4 shows the comparison of η (defined in 2.3) 
obtained from the identification procedure vs. the prescribed values. 



In order to check the stability of the identification method from the practical point of view, the 
simulated measured response was contaminated with uncorrelated Gaussian noise at 5% RMS level of 
ε-ε

L
. Figure 5 shows the comparison of η obtained from identification procedure with additional noise 

vs. the prescribed values. Elements 1, 6, 11 are not depicted in the comparison because strains in these 
horizontal elements are very small and the applied noise influences member responses significantly. 

 
Fig. 4 Numerical identification of damping parameter for assumed scenario. 

 
Fig. 5 Numerical identification of damping parameter for assumed scenario (with 5% noise). 

3.4. Reference measurements and tuning the numerical model 

The structure was excited with a harmonic force of 70 N amplitude at the frequency 19 Hz, applied 
horizontally to the left bottom node via a modal shaker. Each element of the truss was equipped with a 
piezoelectric fibre composite (PFC) sensor collecting strains. The measurement data were acquired by a 
National Instruments card and processed by the LabView software. 

The experiments were carried out for the reference structure first in order to match the numerical 
model to measurements. Due to various imperfections of the real truss set-up e.g. not ideal application 



of load through a stinger, possible friction at nodes, etc., it turned out that the horizontal elements 1, 6 
and 11 respond at much higher level in the experiment than in numerical computations. Also the model-
measurements discrepancy in elements 2, 5, 9 and 15 is big. Therefore the seven mentioned elements 
were not taken into account when matching the responses of the numerical model and the real structure. 
The procedure of stiffness/mass identification, described in 2.2, was run to tune the model. The result of 
the tuning is depicted in Fig. 6. 

 
Fig. 6 Result of matching the numerical model to experimental data for eight elements. 

3.5. Comparison of the reference and modified responses in experiment 

A scenario of parameter modification was realized by applying construction foam to the near-
support element no. 13 as shown in Fig. 1c. The mass of the foam was approximately 70% of the mass 
of element 13. The influence of this modification in all elements can be studied in Fig. 7. The presented 
responses (original and with foam) are an average of six measurements. 

 
Fig. 7 Comparison of structural responses for the reference and modified case in experiment. 



It can be seen that application of the foam does not make the structure respond very differently. The 
most significant change is in elements 8 and 13. 

It was observed that the energy of excitation at 19 Hz was quite significant. Unfortunately some of it 
was apparently dissipated through the base, on which the shaker was standing, due to its slight rocking 
on uneven floor. Therefore it was decided to improve the excitation conditions before testing the 
parameter identification procedure using experimental data. 

4. CONCLUSIONS 

An approach to structural parameter identification based on the Virtual Distortion Method (VDM) is 
presented. The method was applied to skeletal structures, in particular trusses. The procedure of model 
updating by VDM consists in modifying structural properties by introducing pseudo quantities to the 
system i.e. pseudo-strains or external pseudo-forces, generally called virtual distortions. Three kinds of 
modifications are considered: stiffness, mass and damping. The results of numerical simulations using 
VDM-based algorithms are very good even with the presence of simulated noise. An experiment was 
conducted in order to verify the simulation results. First, the numerical model of the investigated 
structure was matched to experimental responses. A modification scenario with construction foam 
added on one element was considered. Unfortunately it turned out that this modification did not make 
the structure respond very differently. It is expected that an improvement of the excitation conditions 
should help to transfer the applied force to the structure more efficiently, which is supposed to influence 
the quality of responses. 

Further work will be focused on analyzing more scenarios of parameter modifications, e.g. 
replacement of elements with different cross-sectional areas, in particular several modifications 
introduced simultaneously. A generalization of the identification procedure allowing not only the 
harmonic but also a time-varying excitation signal will be worked upon. 
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